Zn2+ potentiates excitatory action of ATP on mammalian neurons.
نویسندگان
چکیده
Despite the increasing recognition that ATP is an important extracellular excitatory mediator in the nervous system, the regulation of ATP receptors is poorly understood. Because the extracellular Zn2+ concentration is regulated in a variety of biological tissues, we studied modulation of the ATP-gated cation channel by Zn2+ in mammalian neurons using the whole-cell patch-clamp technique. In approximately 73% of cells tested, the amplitude of ATP-activated membrane ion current increased up to 5-fold in the presence of micromolar concentrations of Zn2+. The characteristics of this action suggest that Zn2+ increases the apparent affinity of the receptor for ATP. In addition, Zn2+ increased membrane depolarization and action potential firing elicited by ATP. These observations suggest that Zn2+ may play a physiological role in regulating the excitatory action of ATP on mammalian neurons.
منابع مشابه
Protective action of zinc against glutamate neurotoxicity in cultured retinal neurons.
PURPOSE To examine the effects of Zn2+ on glutamate-induced neurotoxicity in cultured retinal neurons. METHODS Primary cultures obtained from fetal rat retinas (16 to 19 days gestation) were used. The neurotoxic effects of excitatory amino acids were quantitatively assessed using the trypan blue exclusion method. RESULTS A brief exposure of retinal cultures to glutamate or N-methyl-D-aspart...
متن کاملA neural mass model of CA1-CA3 neural network and studying sharp wave ripples
We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...
متن کاملATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain.
ATP-gated cation channels (P2X receptors) exist on the soma of proprioceptive neurons in the trigeminal mesencephalic nucleus (MNV) in the brain stem. However, these pseudomonopolar neurons seem to receive no synaptic input to their soma; we therefore hypothesized that in MNV neurons, the P2X receptors of importance may be those located on their central terminal projections. Here, we show in tr...
متن کاملDifferential modulation by copper and zinc of P2X2 and P2X4 receptor function.
Differential Modulation by Copper and Zinc of P2X2 and P2X4 Receptor Function. The modulation by Cu2+ and Zn2+ of P2X2 and P2X4 receptors expressed in Xenopus oocytes was studied with the two-electrode, voltage-clamp technique. In oocytes expressing P2X2 receptors, both Cu2+ and Zn2+, in the concentration range 1-130 microM, reversibly potentiated current activated by submaximal concentrations ...
متن کاملDevelopmental regulation of spontaneous activity in the Mammalian cochlea.
Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 17 شماره
صفحات -
تاریخ انتشار 1993